Photobucket"alt="gambar"title="klik here to get more"/>

Selasa, 17 April 2012

Arti dan Pengertian Bandwidth

(Arti dan Pengertian Bandwidth) – Bandwidth adalah besaran yang menunjukkan seberapa banyak data yang dapat dilewatkan dalam koneksi melalui sebuah network. Lebar pita atau kapasitas saluran informasi. Kemampuan maksimum dari suatu alat untuk menyalurkan informasi dalam satuan waktu detik.
Dikenal juga dengan perbedaan atau interval, antara batas teratas dan terbawah dari suatu frekuensi gelombang transmisi dalam suatu kanal komunikasi. Satuan yang digunakan Hertz untuk sirkuit analog dan detik dalam satuan digital.
Jalur lebar analog diukur dalam unit Hertz (Hz) atau kitaran second. Jalur lebar digital pula merujuk kepada jumlah atau volume data yang dilewatkan melalui satu saluran komunikasi yang diukur dalam unit bit per second (bps) tanpa melibatkan gangguan.
Istilah lebar jalur (bandwith) sepatutnya tidak dikelirukan dengan istilah jalur (band), seperti pada telepon tanpa kabel, contohnya beroperasi pada jalur 800MMHz. Lebar jalur ialah ruang yang digunakan pada jalur tersebut. Dalam komunikasi tanpa wayar, ukuran atau lebar jalur salurannya memberi kesan kepada transmisi. Sejumlah data yang mengalir melalui satu saluran sempit mengambil masa yang lebih lama berbanding sejumlah data yang sama apabila mengalir menerusi satu saluran yang lebih lebar.
Samakah Bandwidth dengan kecepatan?
Jawabannya: Bandwidth dengan kecepatan itu berbeda.
Mari kita lihat sebagai berikut. Informasi dialirkan melalui berbagai media. Misalnya kita pilih kabel sebagai media. Sehingga informasi dialirkan melalui kabel tersebut. Karena informasi bisa dialirkan melalui kabel, kita bisa mengasumsikan kabel ini sebagai pipa tempat informasi disalurkan.
Nah, bandwidth seperti diungkapkan di atas adalah kemampuan maksimum dari pipa untuk mengalirkan data dalam waktu satu detik. Sedangkan kecepatan, adalah jarak yang ditempuh dari suatu satuan waktu, misalnya dalam satu detik.
Misalnya server anda terhubung melalui kabel telepon anda menghubungkan terhubung dengan modem ke Internet Service Provider (ISP) dengan bandwidth 56kbps. Semakin lebar bandwidth yang ada tentu data yang dilewatkan akan semakin besar.
Saluran ini dibagi menjadi dua, Narrowband (jalur sempit) dan Wideband (jalur lebar).
Lihat juga: Transmission, Digital data transmission, Full duplex, Half duplex, Narrowband, Parallel transmission, Simplex, Synchronous transmission, Wideband, dan broadband.
Pengertian lain dari Bandwidth (disebut juga Data Transfer atau Site Traffic) adalah data yang keluar+masuk/upload+download ke account anda.
Contoh: Ketika anda menerima/mengirim email, asumsikan besarnya email yang diterima/dikirim adalah 4 KB, berarti secara teori, untuk bandwidth 1.000 MB (1.000.000 KB) anda bisa *kirim* 250.000 email atau berbagai variasi antara kirim/terima, misalnya 100.000 kirim, 150.000 terima. Ini hanya contoh untuk penjelasan bandwidth, pada kenyataannya, data yang keluar masuk ke account bisa datang dari pengunjung (yang mendownload halaman website ke PC-nya), atau anda upload gambar/file ke account dan sebagainya.
Bandwidth/Site Traffic dihitung per bulan & bisa dilihat di cPanel.
Jika anda mengenal Telkom Speedy, Bandwidth ini cara kerjanya sama dengan Kuota di Telkom Speedy. Hanya saja yang menjadi acuan bagi perhitungan kuota Telkom Speedy adalah data yang keluar/masuk ke PC/Modem ADSL anda, sedangkan di hosting acuannya adalah data yang keluar/masuk ke account.

KELAS IP ADDRESS


Sturtur IP Address
Pada IPv4 Alamat IP terdiri dari bilangan biner sepanjang 32 bit yang dibagi atas 4 segmen. Tiap segmen terdiri atas 8 bit yang berarti memiliki nilai desimal dari 0 - 255. Luas area dari alamat IP ( range address ) yang bisa digunakan adalah dari 00000000.00000000.00000000.00000000 sampai dengan 11111111.11111111.11111111.11111111. Jadi, ada sebanyak 232 kombinasi address yang bisa dipakai diseluruh dunia (walaupun pada kenyataannya ada sejumlah IP Address yang digunakan untuk keperluan khusus). Jadi, jaringan TCP/IP dengan 32 bit address ini mampu menampung sebanyak 232 atau lebih dari 4 milyar host. Untuk memudahkan pembacaan dan penulisan, IP Address biasanya direpresentasikan dalam bilangan desimal. Jadi, range address di atas dapat diubah menjadi address 0.0.0.0 sampai address 255.255.255.255. Nilai desimal dari IP Address inilah yang dikenal dalam pemakaian sehari-hari.
2.1 Konversi Bilangan Biner, Desimal dan Hexadecimal
Didalam hitungan matematika kita lebih mengenal bilangan desimal ( 0 – 9 ) dibanding bilangan biner ( 1 dan 0 ) atau hexadecimal ( 0 – F ). Disini akan dijabarkan tentang perubahan dari bilangan desimal ke biner atau dari biner ke hexadecimal. Konversi ini dibuat untuk memudahkan pengguna mengetahui struktur IP yang berbasiskan bilangan biner.
2.1.1 Mengubah bilangan desimal ke biner
Cara menghitung bilangan biner dari bilangan desimal adalah dengan metode membagi bilangan desimal dengan bilangan biner sambil memperhatikan hasil sisa pembagian.
Contoh:
(1)192
196
: 2
=
96
sisa 0
96
: 2
=
48
sisa 0
48
: 2
=
24
sisa 0
24
: 2
=
12
sisa 0
12
: 2
=
6
sisa 0
6
: 2
=
3
sisa 0
3
: 2
=
1
sisa 1
Bilangan biner nya adalah angka sisa akhir dibaca dari bawah keatas, yaitu : 11000000, dan untuk pembuktian konversi angka desimal ini bisa dibalik dengan cara merubahnya kembali menjadi bilangan biner.
2.1.2 Mengubah bilangan biner ke desimal
Cara menghitungnya adalah dengan membuat tabel dan memposisikan bilangan biner dengan satuan decimal sebagai berikut. Kemudian nanti jumlahkan angka desimal tersebut berdasarkan bilangan biner yang dimasukkan.
Contoh 1 :
Binary
1
1
0
0
0
0
0
0
Decimal
128
64
0
16
0
0
0
0
Jika bilangan biner 0 maka decimalnya dihitung 0 tapi jika angkanya 1 maka ia dihitung berdasarkan tabel desimal yang dimaksud. Dari tabel diatas didapatkan bilangan biner yang bernilai 1 tepat berada dikolom desimal 128 dan 64 sedangkan angka 0 disini tidak dihitung maka perhitungannya adalah 128 + 64 = 192.
Jadi Konversi dari bilangan biner 11000000 adalah 192
Contoh 2: tabel dibawah adalah bilangan biner 11111111
Biner
1
1
1
1
1
1
1
1
Decimal
128
64
32
16
8
4
2
1
Maka bilangan desimalnya adalah 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
2.1.3 Mengubah bilangan biner ke hexadesimal
Untuk mengubah bilangan biner ke hexadesimal, susun bilangan biner menjadi kelompok 4 bit. Mulai pengelompokkan dari bit dari kanan kekiri. Jika jumlah bit kelompok terakhir tidak cukup, tambahkan 0.
Hexadesimal
Biner
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111
3.Pembagian Kelas IP Address
3.2.1IP versi 4 (IPv4)
Kelas IP addressUntuk pembagian kelas IP address saya gunakan standar IPv4 yang terdiri atas 32 bit angka binary. Dapat disimbolkan dengan angka sebagai berikut : Alamat IP yang dimiliki oleh sebuah host dapat dibagi ke dalam dua buah bagian, yakni:
  • Network Identifier atau Network Address (alamat jaringan) yang digunakan khusus untuk mengidentifikasikan alamat jaringan di mana host berada. Semua sistem di dalam sebuah jaringan fisik yang sama harus memiliki alamat Network identifier yang sama. Network identifier juga harus bersifat unik dalam sebuah internetwork. Alamat Network Identifier tidak boleh bernilai 0 atau 255.[2]
  • Host Identifier atau Host address (alamat host) yang digunakan khusus untuk mengidentifikasikan alamat host di dalam jaringan. Nilai Host Identifier tidak boleh bernilai 0 atau 255 dan harus bersifat unik di dalam network identifier di mana ia berada.[2]
Ada 3 kelas address yang utama dalam TCP/IP, yakni kelas A, kelas B dan kelas C. Perangkat lunak Internet Protocol menentukan pembagian jenis kelas ini dengan menguji beberapa bit pertama dari IP Address. Penentuan kelas ini dilakukan dengan cara berikut
1.Kelas A
Struktur kelas A
Ciri-ciri dari kelas A adalah jika bit pertama bernilai 0, kelas ini untuk konfigurasi jaringan yang berskala besar. Dari angka 0 sampai 7 bit berikutnya merupakan bit network dan 24 bit selanjutnya dinamakan bit host. Dengan demikian hanya ada 128 network kelas A, yakni dari nomor 0.xxx.xxx.xxx sampai 127.xxx.xxx.xxx, tetapi setiap network dapat menampung lebih dari 16 juta (2563) host (xxx adalah variabel, nilainya dari 0 s/d 255). Range addressnya mulai dari 1 – 126.
2.Kelas B
Struktur kelas B
Ciri-ciri dari kelas B adalah jika 2 bit pertama bernilai 10, maka 14 bit berikutnya (16 bit pertama) merupakan bit network sedangkan 16 bit terakhir merupakan bit host. Dengan demikian terdapat lebih dari 16 ribu network kelas B (64 x 256), yakni dari network 128.0.xxx.xxx - 191.255.xxx.xxx. Setiap network kelas B mampu menampung lebih dari 65 ribu host (2562). kelas ini untuk konfigurasi jaringan berskala menengah sampai yang berskala besar. Range addressnya mulai dari 128 – 191.
3.Kelas C
Struktur kelas C
Ciri-ciri dari kelas C adalah jika 3 bit pertama bernilai 110, maka 21 bit berikutnya (24 bit pertama) merupakan bit network sedangkan 8 bit terakhir merupakan bit host. Dengan demikian terdapat lebih dari 2 juta network kelas C (32 x 256 x 256), yakni dari nomor 192.0.0.xxx sampai 223.255.255.xxx. Setiap network kelas C hanya mampu menampung sekitar 256 host. kelas ini untuk konfigurasi jaringan berskala kecil. Range addressnya mulai dari 192 – 223.
Selain ke tiga kelas di atas, ada 2 kelas lagi yang ditujukan untuk pemakaian khusus, yakni kelas D dan kelas E. Jika 4 bit pertama adalah 1110, IP Address merupakan kelas D yang digunakan untuk multicast address, yakni sejumlah komputer yang memakai bersama suatu aplikasi (bedakan dengan pengertian network address yang mengacu kepada sejumlah komputer yang memakai bersama suatu network). Salah satu penggunaan multicast address yang sedang berkembang saat ini di Internet adalah untuk aplikasi real-time video conference yang melibatkan lebih dari dua host (multipoint), menggunakan Multicast Backbone (MBone). Kelas terakhir adalah kelas E (4 bit pertama adalah 1111 atau sisa dari seluruh kelas). Pemakaiannya dicadangkan untuk kegiatan eksperimen.
3.2.2 IP versi 6 (IPv6)
Selanjutnya akan dibahas sedikit mengenai IPv6, Berbeda dengan IPv4 yang hanya memiliki panjang 32-bit (jumlah total alamat yang dapat dicapainya mencapai 4,294,967,296 alamat), IPv6 memiliki panjang 128-bit yang total alamatnya mungkin hingga 2128=3,4 x 1038 alamat. Total alamat yang sangat besar ini bertujuan untuk menyediakan ruang alamat yang tidak akan habis (hingga beberapa masa ke depan), dan membentuk infrastruktur routing yang disusun secara hierarkis, sehingga mengurangi kompleksitas proses routing.
IPv6 mengizinkan adanya DHCP Server sebagai pengatur alamat otomatis. Jika dalam IPv4 terdapat dynamic address dan static address, maka dalam IPv6, konfigurasi alamat dengan menggunakan DHCP Server dinamakan dengan stateful address configuration, sementara jika konfigurasi alamat IPv6 tanpa DHCP Server dinamakan dengan stateless address configuration.
Dalam IPv6, alamat 128-bit akan dibagi ke dalam 8 blok berukuran 16-bit, yang dapat dikonversikan ke dalam bilangan heksadesimal berukuran 4-digit. Setiap blok bilangan heksadesimal tersebut akan dipisahkan dengan tanda titik dua (:). Karenanya, format notasi yang digunakan oleh IPv6 juga sering disebut dengan colon-hexadecimal format, berbeda dengan IPv4 yang menggunakan dotted-decimal format. Berikut ini adalah contoh alamat IPv6 dalam bentuk bilangan biner: Untuk menerjemahkannya ke dalam bentuk notasi colon-hexadecimal format, angka-angka biner dibagi ke dalam 8 buah blok berukuran 16-bit:
0010000111011010
0000000011010011
0000000000000000
0010111100111011
0000001010101010
0000000011111111
1111111000101000
1001110001011010
setiap blok berukuran 16-bit tersebut harus dikonversikan ke dalam bilangan heksadesimal dan setiap bilangan heksadesimal tersebut dipisahkan dengan menggunakan tanda titik dua. Hasil konversinya adalah sebagai berikut:
21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A

NOISE

Derau atau yang biasa disebut noise adalah suatu sinyal gangguan yang bersifat akustik (suara), elektris, maupun elektronis yang hadir dalam suatu sistem (rangkaian listrik/elektronika) dalam bentuk gangguan yang bukan merupakan sinyal yang diinginkan.
Sumber derau dapat dikelompokkan dalam tiga kategori:
  1. Sumber derau intrinsic yang muncul dari fluktuasi acak di dalam suatu sistemfisik seperti thermal dan shot noise.
  2. Sumber derau buatan manusia seperti motorswitchelektronika digital.
  3. Derau karena gangguan alamiah seperti petir dan bintik matahari.           

jenis Derau

  • Correlated noise: hubungan antara sinyal dan noise masuk dalam kategori ini. Karena itu, correlated noise hanya muncul saat ada sinyal.
  • Uncorrelated noise: noise yang dapat muncul kapanpun, saat terdapat sinyal maupun tidak ada sinyal. Uncorrelated noise muncul tanpa memperhatikan adanya sinyal atau tidak. Noise dalam kategori ini dapat dibagi lagi menjadi dua kategori umum, yaitu :
  1. Eksternal Noise: Adalah noise yang dihasilkan dari luar alat atau sirkuit. Noise tidak disebabkan oleh komponen alat dalam sistem komunikasi tersebut. Ada 3 sumber utama noise eksternal:
    1. Atmospheric noise: Gangguan elektris yang terjadi secara alami, disebabkan oleh hal – hal yang berkaitan dengan atmosfer bumi. Noise atmosfer biasanya disebut jugastatic electricity. Noise jenis ini bersumber dari kondisi elektris yang bersifat alami, seperti kilat dan halilintar. Static electricity berbentuk impuls yang menyebar ke dalam energi sepanjang lebar frekuensi
    2. Ekstraterrestrial noise: Noise ini terdiri dari sinyal elektris yang dihasilkan dari luar atmosfer bumi. Terkadang disebut juga deep-space noise. Noise ekstraterrestrial bisa disebabkan oleh Milky Waygalaksi yang lain, dan matahari.Noise ini dibagi menjadi 2 kategori, yaitu solar dan cosmic noise:
      1. Solar noise: Solar noise dihasilkan langsung dari panas matahari. Ada dua bagian solar noise, yaitu saat kondisi dimana intensitas radiasi konstan dan tinggi, gangguan muncul karena aktivitas sun-spot dan solar flare-ups. Besar gangguan yang jarang terjadi ini (bersifat sporadis) bergantung pada aktivitas sun spot mengikuti pola perputaran yang berulang setiap 11 tahun.
      2. Cosmic noise: Cosmic noise didistribusikan secara kontinu di sepanjang galaksi. Intensitas noise cenderung kecil karena sumber noise galaksi terletak lebih jauh dari matahari. Cosmic noise sering juga disebut black-body noise dan didistribusikan secara merata di seluruh angkasa.
    3. Man-made noise: Secara sederhana diartikan sebagai noise yang dihasilkan manusia. Sumber utama dari noise ini adalah mekanisme spark-producing, seperti komutatordalam motor elektriksistem pembakaran kendaraan bermotoralternator, dan aktivitas peralihan alat oleh manusia (switching equipment). Misalnya, setiap saat di rumah, penghuni sering mematikan dan menyalakan lampu melalui saklar, otomatis arus listrik dapat tiba-tiba muncul atau terhenti. Tegangan dan arus listrik berubah secara mendadak, perubahan ini memuat lebar frekuensi yang cukup besar. Beberapa frekuensi itu memancar/menyebar dari saklar atau listrik rumah, yang bertindak sebagai miniatur penghantar dan antena.
      Noise karena aktivitas manusia ini disebut juga impulse noise, karena bersumber dari aktivitas on/of yang bersifat mendadak. Spektrum noise cenderung besar dan lebar frekuensi bisa sampai 10 MHz. Noise jenis ini lebih sering terjadi pada daerah metropolitan dan area industri yang padat penduduknya, karena itu disebut juga industrial noise.
  2. Internal Noise:Internal noise juga menjadi faktor yang penting dalam sistem komunikasi. Internal noise adalah gangguan elektris yang dihasilkan alat atau sirkuit. Noise muncul berasal dari komponen alat dalam sistem komunikasi bersangkutan. Ada 3 jenis utama noise yang dihasilkan secara internal, yaitu:
    1. Thermal noise: Thermal noise berhubungan dengan perpindahan elektron yang cepat dan acak dalam alat konduktor akibat digitasi thermal.
      Perpindahan yang bersifat random ini pertama kali ditemukan oleh ahli tumbuh-tumbuhan, Robert Brown, yang mengamati perpindahan partikel alami dalam penyerbukan biji padi.
      Perpindahan random elektron pertama kali dikenal tahun 1927 oleh JB. Johnson di Bell Telephone Laboratories. Johnson membuktikan bahwa kekuatan thermal noise proporsional dengan bandwidth dan temperatur absolut.
      Secara matematis, kekuatan noise adalah:
      N = KTB
      · N = kekuatan noise (noise power)
      · K = Boltzmann’s proportionality constant (1.38 × 10-23 joules per Kelvin)
      · T = Temperatur absolute
      · B = bandwidth
    2. Shot noise: noise jenis ini muncul karena penyampaian sinyal yang tidak beraturan pada keluaran (output) alat elektronik yang digunakan, seperti pada transistor dua kutub. Pada alat elektronik, jumlah partikel pembawa energi (elektron) yang terbatas menghasilkan fluktuasi pada arus elektrik konduktor. Shot noise juga bisa terjadi pada alat optik, akibat keterbatasan foton pada alat optik. Pada shot noise, penyampaian sinyal tidak bergerak secara kontinu dan beraturan, tapi bergerak berdasarkan garis edar yang acak. Karena itu, gangguan yang dihasilkan acak dan berlapis pada sinyal yang ada. Ketika shot noise semakin kuat, suara yang ditimbulkan noise ini mirip dengan butir logam yang jatuh di atas genteng timah.
      Shot noise tidak berlaku pada kawat logam, karena hubungan antar elektron pada kawat logam dapat menghilangkan fluktuasi acak.
      Shot noise disebut juga transistor noise dan saling melengkapi dengan thermal noise.
      Penelitian shot noise pertama kali dilakukan pada kutub positif dan kutub negatif tabung pesawat vakum (vacuum-tube amplifier) dan dideskripsikan secara matematis olehW. Schottky tahun 1918.
    3. Transit-time noise: Arus sinyal yang dibawa melintasi sistem masukan dan keluaran pada alat elektronik, (misalnya dari penyampai (emitter) ke pengumpul (collector) padatransistor) menghasilkan noise yang tidak beraturan dan bervariasi. Inilah yang disebut dengan transit-time noise. Transit- time noise terjadi pada frekuensi tinggi ketika sinyal bergerak melintasi semikonduktor dan membutuhkan waktu yang cukup banyak untuk satu perputaran sinyal.
      Transit time noise pada transistor ditentukan oleh mobilitasdata yang dibawa, bias tegangan, dan konstruksi transistor. Jika perjalanan data tertunda dengan frekuensi yang tinggi saat perlintasan semikonduktor, noise akan lebih banyak dibandingkan dengan sinyal aslinya.

[sunting]Efek derau

Derau dapat memberikan efek gangguan pada sistem komunikasi dalam 3 area:
  1. Derau menyebabkan pendengar tidak mengerti dengan sinyal asli yang disampaikan atau bahkan tidak mengerti dengan seluruh sinyal
  2. Derau dapat menyebabkan kegagalan dalam sistem penerimaan sinyal.
  3. Derau juga mengakibatkan sistem yang tidak efisien
Tujuan sistem komunikasi adalah untuk mengirimkan data sebanyak mungkin sesuai dengan waktu yang direncanakan, dengan menggunakan cukup bandwidthpower, dan channelyang tersedia. Jika derau memberi efek gangguan pada sistem, baik karena kesalahan pada sistem penerimaan sinyal maupun kegagalan sistem (malafungsi), perancang dan pengguna sistem harus mengganti sistem tersebut. Untuk mengatasi derau ini diperlukan filter untuk mengurangi gangguan derau supaya sinyal yang dikirim tidak tertekan oleh derau. Namun, apapun cara yang digunakan, sistem komunikasi menjadi tidak efisien karena membuang banyak waktu dan tenaga untuk mengatasi derau.
 

ERROR RATE

Bit error rate atau Bit error ratio biasa disingkat dengan BER, merupakan sejumlah bit digital bernilai tinggi pada jaringan transmisi yang ditafsirkan sebagai keadaan rendah atau sebaliknya, kemudian dibagi dengan sejumlah bit yang diterima atau dikirim atau diproses selama beberapa periode yang telah ditetapkan.
Sebagai contoh, diasumsikan berikut ini urutan bit yang ditransmisikan:
0 1 1 0 0 0 1 0 1 1,
dan pada alat penerima akan menterjemahkan urutan bit sebagai berikut:
0 1 0 1 0 1 0 0 1,
Maka BER pada kasus ini ada 3 kesalahan penafsiran bit (yang digaris bawah) kemudian sebagai nilai BER yang dihasilkan adalah nilai kesalahan ini dibagi dengan sejumlah bit yang kirim yaitu 10 bit, sehingga didapatkan 0.3 atau 30%.
 

GUIDED DAN UNGUIDED

Dalam telekomunikasi, transmisi merupakan proses membawa informasi antar end points di dalam sistem/jaringan. Dalam suatu jaringan telekomunikasi, sistem transmisi digunakan untuk saling menghubungkan antar sentral (router). Secara keseluruhan, sistem transmisi ini disebut sebagai jaringan transmisi.
Sistem transmisi menggunakan dua macam medium transmisi, yaitu guided transmission media dan unguided transmission media. Pada guided transmission media, gelombang yang ditransmisikan terpandu dalam suatu media padat.  Contoh guided transmission media adalah kabel tembaga dan serat optik. Sedangkan contoh unguided transmission media adalah inframerah, gelombang radio, dan microwave, baik terrestrial maupun satelit. Pada tulisan ini, pembahasan akan dibatasi pada transmisi dengan menggunakan salah satu guided transmission media, yaitu kabel tembaga.
Kabel tembaga ini merupakan media transmisi yang sudah ditemukan sejak lama dan biasa dipergunakan dalam kehidupan sehari-hari. Namun, kabel tembaga ini memiliki kelemahan, yaitu sensitif terhadap interferensi dan memiliki redaman yang tinggi. Redaman ini akan semakin besar bila frekuensi sinyal dinaikkan. Dalam kabel tembaga, sinyal akan merambat dengan kecepatan mendekati 200.000 km/s atau dua per tiga dari kecepatan cahaya.
Pengertian Unguided Media Transmisi
Sebelum kita masuk pada pembahasan mengenai unguided media transmisi, ada baiknya jika kita mengetahui terlebih dahulu sekilas tentang media transmisi. Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data), karena jarak yang jauh, maka data terlebih dahulu diubah menjadi kode/isyarat, dan isyarat inilah yang akan dimanipulasi dengan berbagai macam cara untuk diubah kembali menjadi data. Media/saluran transmisi terletak di bawah physical  layer. Merupakan jalur transmisi sinyal yang terbentuk di physical layer. Media transmisi mempunyai dua bentuk, yaitu :
  1. Media transmisi guided
Media transmisi guided adalah media yang mentransmisikan gelombang elektromagnetik (data) dengan menggunakan konduktor fisik seperti serat optic atau kabel.
  1. Media transmisi unguided
Media transmisi unguided  adalah media yang mentransmisikan gelombang elektromagnetik (data) tanpa menggunakan konduktor fisik. . Media unguided, transmisi dan penerimaan dapat dicapai dengan menggunakan antena.
Pada pembahasan dalam makalah ini, kita akan mengenal lebih jauh tentang bentuk yang kedua yaitu media transmisi unguided. Unguided transmission media atau media transmisi tidak terpandu adalah merupakan jaringan yang menggunakan sistem gelombang. Macam-macam sistem gelombang tersebut adalah
  • Gelombang mikro
Gelombang mikro (microwave) merupakan bentuk radio yang menggunakan frekuensi tinggi (dalam satuan gigahertz), yang meliputi kawasan UHF, SHF dan EHF. Gelombang mikro banyak digunakan pada sistem jaringan MAN, warnet dan penyedia layanan internet (ISP). Keuntungan menggunakan gelombang mikro adalah akuisisi antar menara tidak begitu dibutuhkan, dapat membawa jumlah data yang besar, biaya murah karena setiap tower antena tidak memerlukan lahan yang luas, frekuensi tinggi atau gelombang pendek karena hanya membutuhkan antena yang kecil. Kelemahan gelombang mikro adalah rentan terhadap cuaca seperti hujan dan mudah terpengaruh pesawat terbang yang melintas di atasnya.
  • Satelit
Satelit adalah media transmisi yang fungsi utamanya menerima sinyal dari stasiun bumi dan meneruskannya ke stasiun bumi lain. Satelit yang mengorbit pada ketinggian 36.000 km di atas bumi memiliki angular orbital velocity yang sama dengan orbital velocity bumi. Hal ini menyebabkan posisi satelit akan relatif stasioner terhadap bumi (geostationary), apabila satelit tersebut mengorbit di atas khatulistiwa. Pada prinsipnya, dengan menempatkan tiga buah satelit geostationary pada posisi yang tepat dapat menjangkau seluruh permukaan bumi. Keuntungan satelit adalah lebih murah dibandingkan dengan menggelar kabel antar benua, dapat menjangkau permukaan bumi yang luas, termasuk daerah terpencil dengan populasi rendah, meningkatnya  trafik telekomunikasi antar benua membuat sistem satelit cukup menarik secara komersial. Kekurangannya adalah keterbatasan teknologi untuk penggunaan antena satelit dengan ukuran yang besar, biaya investasi dan asuransi satelit yang masih mahal, atmospheric losses yang besar untuk frekuensi di atas 30 GHz membatasi penggunaan frequency carrier.
  • Gelombang radio
Gelombang radio adalah media transmisi yang dapat digunakan untuk mengirimkan suara ataupun data. Kelebihan transmisi gelombang radio adalah dapat mengirimkan isyarat dengan posisi sembarang (tidak harus lurus) dan dimungkinkan dalam keadaan bergerak. Frekuensi yang digunakan antara 3 KHz sampai 300 GHz. Gelombang radio digunakan pada band VHF dan UHF : 30 MHz sampai 1 GHz termasuk radio FM dan UHF dan VHF televisi. Untuk komunikasi data digital digunakan packet radio.
  • Inframerah
Inframerah biasa digunakan untuk  komunikasi  jarak dekat, dengan kecepatan 4 Mbps. Dalam penggunaannya untuk pengendalian jarak jauh, misalnya remote control pada televisi serta alat elektronik lainnya. Keuntungan inframerah adalah kebal terhadap interferensi radio dan elekromagnetik, inframerah mudah dibuat dan murah, instalasi mudah, mudah dipindah-pindah, keamanan lebih tinggi daripada gelombang radio. Kelemahan inframerah adalah jarak terbatas, tidak dapat menembus dinding, harus ada lintasan lurus dari pengirim dan penerima, tidak dapat digunakan di luar ruangan karena akan terganggu oleh cahaya matahari.

Kamis, 12 April 2012

Pengertian Data Digital dan Analog


Sistem digital merupakan bentuk sampling dari sytem analog. digital pada dasarnya di code-kan dalam bentuk biner (atau Hexa). besarnya nilai suatu sistem digital dibatasi oleh lebarnya / jumlah bit (bandwidth). jumlah bit juga sangat mempengaruhi nilai akurasi sistem digital. Contoh kasus ada sistem digital dengan lebar 1 byte (8 bit). maka nilai-nilai yang dapat dikenali oleh sistem adalah bilangan bulat dari 0 – 255 ( 256 nilai : 2 pangkat 8 ).
Pada sistem analog, terdapat amplifier di sepanjang jalur transmisi. Setiap amplifier menghasilkan penguatan (gain), baik menguatkan sinyal pesan maupun noise tambahan yang menyertai di sepanjang jalur transmisi tersebut. Pada sistem digital, amplifier digantikan regenerative repeater. Fungsi repeater selain menguatkan sinyal, juga “membersihkan” sinyal tersebut dari noise. Pada sinyal “unipolar baseband”, sinyal input hanya mempunyai dua nilai – 0 atau 1. Jadi repeater harus memutuskan, mana dari kedua kemungkinan tersebut yang boleh ditampilkan pada interval waktu tertentu, untuk menjadi nilai sesungguhnya di sisi terima.
Keuntungan kedua dari sistem komunikasi digital adalah bahwa kita berhubungan dengan nilai-nilai, bukan dengan bentuk gelombang. Nilai-nilai bisa dimanipulasi dengan rangkaian rangkaian logika, atau jika perlu, dengan mikroprosesor. Operasi-operasi matematika yang rumit bisa secara mudah ditampilkan untuk mendapatkan fungsi-fungsi pemrosesan sinyal atau keamanan dalam transmisi sinyal.
Keuntungan ketiga berhubungan dengan range dinamis. Kita dapat mengilustrasikan hubungan ini dalam sebuah contoh. Perekaman disk piringan hitam analog mempunyai masalah terhadap range dinamik yang terbatas. Suara-suara yang sangat keras memerlukan variasi bentuk alur yang ekstrim, dan sulit bagi jarum perekam untuk mengikuti variasi-variasi tersebut. Sementara perekaman secara digital tidak mengalami masalah, karena semua nilai amplitudo-nya, baik yang sangat tinggi maupun yang sangat rendah, ditransmisikan menggunakan urutan sinyal terbatas yang sama.
Namun di dunia ini tidak ada yang ideal, demikian pula halnya dengan sistem komunikasi digital. Kerugian sistem digital dibandingkan dengan sistem analog adalah, bahwa sistem digital memerlukan bandwidth yang besar. Sebagai contoh, sebuah kanal suara tunggal dapat ditransmisikan menggunakan single -sideband AM dengan bandwidth yang kurang dari 5 kHz. Dengan menggunakan sistem digital, untuk mentransmisikan sinyal yang sama, diperlukan bandwidth hingga empat kali dari sistem analog. Kerugian yang lain adalah selalu harus tersedia sinkronisasi. Ini penting bagi sistem untuk mengetahui kapan setiap simbol yang terkirim mulai dan kapan berakhir, dan perlu meyakinkan apakah setiap simbol sudah terkirim dengan benar.
Secara gampangannya, digital itu adalah 0 dan 1, atau logika biner, atau diskrit, sedang analog adalah continous. Digital bisa dilihat sebagai analog yang dicuplik/di sampling, kalau samplingnya semakin sering atau deltanya makin kecil, katakan mendekati nol, maka sinyal digital bisa terlihat menjadi analog kembali. Menghitung sinyal digital lebih gampang karena diskrit, sedang analog anda harus menggunakan diferensial integral.
cara bodone (paling bodo) nek analog bentuk gelombange sinus (ujungnya tumpul gitulah), digital itu bentuk gelombangnya Kotak.
Kalau alat2 yg digital, itu yang dibuat dan bekerja didasarkan pada prinsip digital, ini lebih gampang dari analog, tapi sekarang ini analog menjadi trend lagi, karena digital dengan clock yg makin kecil Gega Herzt atau lebih, perilakunya sudah menjadi seperti rangkaian analog, jadi diperlukan ahli-ahli rangkaian analog. kalau untuk telekomunikasi, mau tidak mau masih melibatkan analog, karena harus menggunakan sinyal pembawa (carrier), komunikasi digitalpun hanya datanya yg didigitalkan (data digital (0-1) dimodulasi dengan carrier sinyal analog) di akhirnya harus diubah lagi jadi analog. Kalau contoh komponen yg bekerja dengan prinsip analog : Transistor, Tabung TV, IC-IC TTL, IC Catu daya. Digital : IC logika, microcontroller, FPGA. Rangkaian analog adalah kebutuhan dasar yang tak tergantikan di banyak sistem yang kompleks, dan menuntut kinerja yang tinggi.
Coba kita lihat sedikit aplikasi dimana analog sulit atau bahkan mustahil untuk digantikan.
1. Pemrosesan Sinyal dari Alam
secara alamiah, sinyal yang dihasilkan alam itu adalah berbentuk analog. misalnya sinyal suara dari mikrofon, seismograph dsb walaupun kemudian bisa diproses dalam domain digital, sehingga banyak alat yang mempunyai bagian ADC dan DAC. nah pembuatan ADC dan DAC dengan presisi dan kecepatan tinggi, konsumsi daya rendah itu sangat sulit, ini memerlukan orang-orang analog.
2. Komunikasi Digital
Untuk mengirim sinyal melalui kabel yang panjang biasanya juga harus diubah dulu menjadi sinyal analog, memerlukan juga perancangan ADC dan DAC.
3. Disk Drive Electronics
Data storage –> binari (Digital) dibaca oleh “magnetic head” –> ANALOG (small, few milli Volt, high noise) disini sinyal perlu di “amplified, filtered, and digitized”
4. Penerima nir-kabel (wireless)
Sinyal yang diambil/diterima oleh antenna penerima RF adalah ANALOG (few milli volt, high noise)
5. Penerima Optis
mengirim data kecepatan tinggi melalui jalur fiber optic yang panjang data harus diubah menjadi bentuk cahaya (light) = ANALOG perlu perancangan rangkaian kecepatan tinggi, dan pita lebar (broad band) oleh orang analog. (saat ini kecepatan receiver 10-40Gb/s)
6. Sensor
Video Camera –> citra/image diubah menjadi arus mengunakan larik fotodioda
sistem ultrasonik –> menggunakan sensor akustik untuk menghasilkan tegangan yang proporsional dengan amplitudo
accelerometer –> mengaktifkan kantong udara ketika kendaraan menabrak sesuatu, maka perubahan kecepatan diukur sebagai akselerasi
itu adalah kerjaan Analog
7. Mikroprosesor & Memory
walaupun sesungguhnya DIGITAL, tapi pada kecepatan tinggi (high speed digital design), perilakunya mirip analog –> dilihat sebagai sinyal analog –> perlu pengertian tentang sistem Analog
kenapa analog lebih sulit dari digital?
1. digital hanya mempertimbangkan speed, power dissipation analog harus memepertimbangkan speed, power dissipation, gain, precission, supply voltage dsb
2. Analog lebih sensitif terhadap derau/noise, crosstalk dan interferensi (kecepatan & presisi).
3. jarang yang bisa diotomatisasi dalam perancangan seperti digital yang bisa di Lay out dan sintesis secara otomatis.
4. Modelling & Simulation untuk analog memerlukan pengalaman karena banyak efek dan perilaku yang “aneh”
5. Teknologi sekarang banyak digunakan dan dirancang untuk memproduksi produk digital, karena itu sulit kalau mau memproduksi yang analog.
Dalam konteks komputer (mesin komputer) maka analog dan digital dalam penerapannya yaitu:
- Analog Computer
Digunakan untuk data yang sifatnya kontinyu dan bukan data yang berbentuk angka, tetapi dalam bentuk fisik,seperti misalnya arus listrik,temperatur,kecepatan,tekanan,dll
- Digital Computer
Digunakan untuk data berbentuk angka atau huruf
Keunggulan :
– Memproses data lebih tepat dibandingkan dengan komputer analog
– Dapat menyimpan data selama masih dibutuhkan oleh proses
– Dapat melakukan operasi logika
– Data yang telah dimasukkan dapat dikoreksi atau dihapus
– Output dari komputer digital dapat berupa angka, huruf,grafik maupun gambar
- Hybrid Computer
Kombinasi komputer analog dan digital.
ISTILAH digital yang selalu kamu dengar sehari-hari itu berarti apa sih? Mulai dari jam digital, apa bedanya dengan jam analog ? Apakah pesawat telpon kamu yang sudah memiliki tombol-tomol angka berarti sudah digital? (bandingkan dengan pesawat telp yang menggunakan ”piringan dial” apakah itu diesbut Analog? Lantas bagaimana dengan album musik kamu yang masih berupa pita kaset atau keping disk? Apakah termasuk kategori analog atau digital juga ? Atau bagaimana juga dengan kamera film (selulosa) dan juga kamera ”digital” kamu?
Analog berarti kuno dan digital berarti moderen, analog murah, digital mahal, atau analog berarti tidak seperti digital yang identik dengan angka-angka. Begitulah anggapan ”awam” tentang analog dan digital. Coba saja kamu lihat istilah jam analog dan jam digital, perbedaannya adalah yang menggunakan ”jarum” adalah analog, dan yang berupa ”display” angka-angka adalah digital.
Analog dan digital sebenarnya lebih kepada istilah dalam penyimpanan dan penyebaran data. Data Analog disebarluaskan melalui gelombang elekromagnetik (gelombang radio) secara terus menerus, yang banyak dipengaruhi oleh faktor ”pengganggu”, sementara data digital adalah merubah data menjadi sederhana yaitu ”hanya” terdiri dari ”0” dan ”1”, yang akan lebih mudah untuk di sebarkan secara mudah tanpa terjadi ”gangguan”.
Pemahaman yang mudah tentang analog dan digital adalah pada pita kaset lagu dan file MP3 kamu. Jika kamu meng-copy (menyalin) atau merekam pita kaset, tentu hasilnya banyak ditentukan oleh alat perekamnya, kebersihan ”head” rekam nya, dan sebagainya, semakin banyak kamu merekam ke tempat lain, kualitas suaranya akan berubah. Tapi dengan meng-copy file MP3, kamu akan mendapat salinannya sama persis dengan aslinya, berapapun banyaknya kamu menggandakannya.Kini ada juga yang menyalin lagu-lagu dari pita kaset menjadi file, atau disebut juga “men-digital-isasi”
Namun dalam bidang audio ini, sistem analog masih memiliki beberapa ”keunggulan” dibanding sistem digital, yang menyebabkan masih ada beberapa penggemar fanatik yang lebih menyukai rekaman analog.
Perbedaan kamera analog (manual) dan kamera digital hanya terletak pada media penyimpanannya, kalau kamera sebelumnya ”menyimpan” data gambar dalam bentuk filem yang harus kamu proses dulu untuk bisa mendapatkan ”foto” nya, sementara kamrea digital menyimpan data gambarnya dalam bentuk data ”digital” yang bisa langsung kamu nikmati sesaat setelah ”dijepret”
Dalam bidang telekomunikasi, perbedaan telepon analog dan digital, bukan berdasarkan jenis pesawat teleponnya, namun kepada ”sistem” di sentral teleponnya, walaupun untuk mendukung sistem sentra yang digital, diperlukan pesawat telepon khusus. Begitu juga dengan siaran televisi analog dan digital. Siaran Analog kadang terganggu oleh cuaca, letak bangunan, dan penyebab lainnya, sementara siaran digital memiliki kualitas suara dan gambar yang lebih bagus, karena ”data”-nya tidak mengalami ”gangguan” saat dikirim ke TV penerima.
Kesimpulan : system digital merupakan perkembangan dari teknologi digital. Sistem analog, terdapat amplifier di sepanjang jalur transmisi. sedangakan Sistem digital merupakan bentuk sampling dari sytem analog. digital pada dasarnya di code-kan dalam bentuk biner (atau Hexa). Analog dan digital sebenarnya lebih kepada istilah dalam penyimpanan dan penyebaran data. Data Analog disebarluaskan melalui gelombang elekromagnetik (gelombang radio) secara terus menerus, yang banyak dipengaruhi oleh faktor ”pengganggu”, sementara data digital adalah merubah data menjadi sederhana yaitu ”hanya” terdiri dari ”0” dan ”1”, yang akan lebih mudah untuk di sebarkan secara mudah tanpa terjadi ”gangguan”.